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Categorization in a Hopfield network trained with weighted examples:
Extensive number of concepts
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We consider the categorization problem in a Hopfield network with an extensive number of copcepts
=aN and trained withs examples of weighk ., 7=1, ... s in the presence of synaptic noise represented by
a dimensionless “temperatureT. We find that the retrieval capacity of an example with weight and the
corresponding categorization error, depend also on the arithmetic Xpeahthe other weights. The catego-
rization process is similar to that in a network trained with Hebb’s rule, buk fdh ,>1 the retrieval phase
is enhanced. We present the phase diagram ifTtheplane, together with the de Almeida—Thouless line of
instability. The phase diagrams in tles plane are discussed in the absence of synaptic noise and several
values of the correlation parameter

PACS numbgs): 64.60.Cn, 75.10.Nr, 75.10.Hk

I. INTRODUCTION weights. When the weight of the marked subset is suffi-
ciently large, the discontinuous transition from retrieval to
In the seminal work by Amit, Gutfreund, and Sompolin- Spin glass phase becomes continuous at a tricritical point.
sky [1] on the statistical equilibrium properties of the When the number of marked patterns is extensive, the tran-
Hopfield model[2] for attractor neural networks, it was Sition is always discontinuousl9]. We refer the reader to
shown that, besides the desired retrieval states of singl@ur previous papefrl12] for more details on the justification
memories, there appeared undesirable mixture states whepé the model, and we concentrate here on the extensions of
several patterns could be recalled. However, in later develth® Work to the case of an extensive number of concepts.
opments it was shown that mixture states could be very use- Yhen we are in the presence of a numperaN of con-
ful in the description of a different mental process, that ofCePts, they may interfere forming a spin glass phas_,e that
categorization. In the categorization process, the networkompetes with the processes of retrieval and categorization,

learns several blurred examples of a concept, and there is ditis _the purpose of this paper tc_) present our reSl_JIts and
” . L phase diagram when#0. We obtained that the retrieval
competition between the retrieval of an individual example : .
and the state in which the network categorizes by retrievin hase IS never a_global minimum of the frge energy, alth(_)ugh
the hidd i to the individual he region in which the retrieval of a particular example is a
€ hidden concept common fo the individua ‘?Xamfﬁﬁs . relative minimum increases with its weight.
The problem of categorization has been widely investi-

. ' : ) The outline of the paper is as follows. We present the
gated in a Hopfield network both in the absefiégand in  c5icyjation of the free energy and saddle point equations

the presencgs] of synaptic noise, in layered neural networks yithin a replica symmetric calculation in Sec. II, together
both for binary{6] and multistate neurorig], and analogical  jth the results for the Almeida-Thouless instability line. We

networks[8]. Dynamical studies were also performed in very |eave Sec. Il for conclusions, and the technical details of the
diluted networks for binary9] and multistate neurond0].  calculation are presented in the Appendix.

The effect of gradual dilution and of synaptic noise in the
categorization ability of an attractor neural network with hi-
erarchically correlated patterns has been studied recently Il. MODEL

[11] . L We study in this paper the categorization ability of a
In a previous publicatiofil2] we addressed ourselves to Hopfield network withN neuronsS =+ 1, trained withs

thg problgm of pategorization in an attractor neural ”etwor,KNeighted examples of a given concept, for an extensive num-
trained with weighted examples in the presence of synaptig, p=aN of concepts. By introducing the dimensionless

noise, for a finite numbers of concepts. We found that th%emperaturér:l/ﬁ as a measure of synaptic noise, the cat-

retrieval capacity of an example in the competition with cat-g,;ation and retrieval overlaps can be obtained from the
egorization depends on the ratio between the weight of the.. . energy associated to the Hamiltonfag]

retrieved example and the mean value of the other weights.

When this ratio is larger than unity we obtained that the line

of first-order transitions between the retrieval and categori- 1 P

zation phases ends at a critical point. Prior to us, a general- H=-3 Iz JijSiSj+ 21 huzi Sl ()
ized Hebb’s rule with weighted patterns has been used in § .

several schemes of neural networks3—17. In [18] a

mechanism was proposed to enhance the retrieval of a finitehere the synapsey; are given by the weighted Hebb’s
subset of “marked” patterns by increasing their relative rule:
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1P s where, from Eq(All),
Ji=q 2 2 METET 2
y3 T

|\>||—\
xIH

2, r(L)Tr(g") (19
and theh, are auxiliary fields. The examplgs ™ are binary k=2 = =
random varlables that may or may not be aligned to the

concept{¢“} with probability ndL is ansX s matrix with elements

L, =8, hr+ (18

172 172

2
)PP, (12

1
P(&éM) =5 (1+b)5(§’” &)+ 5 (1=b)a(&+£0).
(3)  while q is thenxn overlap matrix with elements

The p conceptd &/} are uncorrelated and they may be equal . 1 o
to =1 with equal probability. Uaya, = N Z S1S72. (13
The quantities of interest are the categorization overlap
1 At this point we consider the simplified distribution of
M=y > St (4)  weights that was introduced in Réfl2], A ,=\,#\4, for
7=2 and we obtain from Eq11)

and the related categorization error 1 1 R
ngG=— ETr[l—,Bw+q]—§Tr[1—ﬁw_q]

€,=—>5—, (5)

1 “
_E(S_ 2)Trin[1-Bwnq]
together with the retrieval overlap =

1 -
1 . —z[Bw,+Bw_+(s—2)Bw,]Trq (14
mMT:N 2] Sigiu . (6) 2 i " =
. ) o with
As we are interested in the categorization process of a
given concept, sag =1, we expect the retrieval and catego- on=An(1—b?),

rization overlapsm; andm;, in Eg. (4) and Eq.(6) to be
O(1), while all the other overlaps fou>1 would be 1
O(1VN) and contribute to the spin glass phase. Then we @==75{ 1+ \g[1+(s— 2)b%]}
write the partition function
= (N —Np[14(5—2)b2]}2+4(s— 1)b* N A ) M2

Z:f H dmlTe_(Nﬁlz)z‘r mir)‘;’ (15)

b s We introduce the order parameters in Ef3) by means
B of the identities
XTriexg oy 2 2 2 MEETSS T HS| |
i,j u=2 =1 i
% = B2a drys
@ 1:fooy1;15 ddys e 2 27-r|
where 2
af 5

xexp —= 2, 1,2 S'S'-Nay,) | (16)
Hi=hy&+ 2 moh & (8) Y
and we obtain foZ,, at the saddle point

Using the replica method we write the free energy per

site: InZn=—N[ Z[M(mll)%r(s DAm(mZ_1)?]

1
BF=—1Im —[Z,—1], 9
n—0 Nn _aBG(qy5)+ 2 r'yﬁq'yﬁ} NBA’ (17)

whereZ,=(Z") and(- - -) stands for an average ovgf"},

{£M} in that order. We reserve the detailed calculations fowhere given the symmetry of the weights we look for a so-
the Appendix and present here only the relevant resultdution:
From Eq.(A2) we can writeZ,,,

My, =My30+Ms—1(1—6) (18)

_ a2 aga ~
Zn:e ('Ble)aZT (mlr) Tr[(e% HI S| >epr‘IBG], (10) and we call
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an HYSY (@p?2 s's)

19

Having in mind the calculation of the de Almeida—

Thoulesd 20] instability line, we write the saddle-point so-
lution:

q75:q+ 77y51
Mys=r+N,s

(20

y _
mi,; =My,

Y
Mg_1=Ms_1,

and we obtain to the second orderNp;, 7,5, in the limit
n—o0,

InZ,
N =npBfrst BAfRsE, (22)

where the replica symmetric free energy is given by
1 2 2
,BfRS:,BE[Klmn"'(S_ DApmg_4]
- f Dz(In 2 coshi Bh, €14+ Bmy N1 €M1+ BN Mg 1X
+,8\/—Z]>+a ,8er+

ai In(l_ wIIBC)

Bo;

T puc P

] (22

with
a,=a_=1,
an=(s—2), (23
C=(1—q).

The averag€ ) in Eq. (21) is over the examples and the
concept, in that order. The variable

(24)

— E 517
T=2

has a conditional binomial distributid®,12]

K

P(x|&h)=

S—l 1 1 s—1—«k
. [§(1+b) 5(1—b)} :

(25

1 1
E[f X+(s—1)].

The correctiom f ggg due to replica symmetry breaking is
the quadratic form obtained in the Appendix, E420)
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A. Replica symmetric theory

The saddle-point equations for the replica symmetric or-
der parameterg, r, m;;, andmg_, are obtained by extrem-
izing frs in EQ. (22) while m; in Eq. (4) is obtained by
differentiating f g5 with respect tch;. We obtain, by calling
n.=2x—(s—1),

my;= f_ DZE ( ){P(K+1)tanl”(ﬁg+)

+P(x)tanh(3g_)}, (26)

1 -1
Ms_1= s_lf DZE( )”K{P(K+1)tanr(,39+)
—P(x)tani(Bg_)}, (27)
mﬁﬁ DZE ( >{P(K+1)tanr(ﬁg+)
—P(x)tani(Bg-)}, (28
f DZE ( ){P(K+l tanf(Bg..)
+P(k)tant?(Bg_)}, (29
where
9. =My £ z\ar =mg_ \pn, (30)
The equation for is
2
i
O A T wpor o

with the coefficientsa; in Eq. (23)

B. Replica symmetry breaking

By solving for y in Eq. (A22), we obtain that the lowest
eigenvalue vanishes at the instability line,

aB’rK=q, (32
where
-1
=j_ Dzz ( ){P(K+1)secﬁ(,6‘g+)
+P(k)sech(Bg_)} (33

andg.. are given in Eq(30).

Ill. NUMERICAL RESULTS AND DISCUSSIONS

We study in this paper the categorization ability of a
Hopfield network trained witts weighted examples of each
concept, for a macroscopic numbegr N of concepts, in

the presence of synaptic noise represented by a dimension-

less “temperature’T, thus extending our previous results for
finite p [12]. Besides the categorization and retrieval overlap
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FIG. 3. Phase diagram in the-s plane in the absence of syn-
FIG. 1. Phase diagram in the« plane, forb=0.4s=10, and  aptic noise for correlation paramet&r=0.4 , and for values
values of\ ; /\,=1.75(broken ling and\ 1 /A ,= 1.0 (full line). At N1/Nn=21.75 (full line) and 0.75(broken ling. The meanings of
high temperature$ > Tgg the system is in the paramagnetic phase,lines ag anda, are as in Fig. 2. The two linas, coincide for both
for T(1)<T<Tgg there is a spin glass phase, for(2)<T  values of\;/\,,. T anda are dimensionless parameters.
<T.(1) there appears a categorization solution that is only locally
stable, and fof <T.(2) the categorization phase is globally stable. )
For \;>\,, there is also a locally stable retrieval phase wien them, let us say.=1; then the retrieval phase of one par-
<Tg. We indicate by AT the de Almeida—Thouless instability line. ticular example{ &} is characterized by the asymmetric so-
T and « are dimensionless parameters. lution m{;>mg_4 in EqQ. (18), while in the categorization
phasem;;=m,_, and the categorization errey in Eq. (16)
drops abruptly to small values. For finite values @#0
in Eq. (14) and Eq.(16), we have to consider now the spin there is also a spin glass phase wit# 0, r #0 in Eq.(20),
glass overlap matrix in Eq(13). Having in mind that the ~Which interferes with the retrieval and categorization phases.
network has not been exposed to the underlying concepts bifYe calculate the spin glass phase in the replica symmetric
only to imperfect and differently weighted examples of them,approximation, together with the de Almeida—Thouless in-
we are interested in knowing how the relative weights influ-stability line where the replicon eigenvalue vanishes.
ence the occurrence of the retrieval, categorization, and spin In the present work we consider the simplest choice of
glass phases. As the concepts are statistically uncorrelated differentiated weights in Eq2), namely\ .=\, 7=2, and
is sufficient to analyze the overlaps corresponding to one okm#X\1. We show in Fig. 1 the phase diagram in thex
plane, obtained from the solution of the saddle point equa-
ol tions, Eqs(26)—(31), for correlation parametdr= 0.4, num-
r ber of examples=10, and for different values of the ratio
L Ni/Nm. For N;=\,, we recover the results of Refl5],
0081 which show only a spin glass and categorization ordered
phases, while fol ;>\, we observe the occurrence of a
locally stable retrieval phase at low temperatures. We also
show the de Almeida—Thouless instability line, which limits
@ T the validity of the replica symmetric theory at very low tem-
0.04 | 8¢ peratures. The effect of varying the number of examplies
:'\ the absence of synaptic noise is shown in Fig. 2, where we
‘ present the phase diagram in thes plane for correlation
parameteib=0.2 for several values of;/\,,. A compari-
son with Fig. 1 shows that the relative enhancement of the
retrieval versus categorization phases may be controlled by
increasing\ 1 /\, and decreasing the correlation parameter
s b. The phase diagrams in the-s plane forT=0, several
FIG. 2. Phase diagram in the-s plane in the absence of syn- yalu.es of the correlation parametgrandA /A, are shown
aptic noise T=0) andb=0.2 for values\;/\,,=0.75 (pointed in Fig. 3. .
line), 1.0(full line), and 1.75broken ling. For high values of the To conclude, the present results show that weighted ex-
network is in the spin glass phase. kor a the network retrieves  @mples allow us to control the extent and importance of the
and for ar< a< a, the network categorizes. For small valuesspf ~ retrieval versus categorization phases within a replica sym-
when < ag, the retrieval solution is globally stable. The three Metric spin glass theory. The de Almeida—Thouless instabil-
lines . for different\; /\,, coincide for larges, but for smallsthe ity line limits our results in the lower part of phase diagram
line for A, /\,=1.75 curves down, leaving only the retrieval solu- in the T-« plane, particularly in the phase boundary between
tion for small values of. T and « are dimensionless parameters. the categorization phase and the spin glass phase. In contrast,

0.06 [~
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the breakdown of the replica symmetric mean field equatiorwhere we introduced asx s matrix L with elements

is less important in the Hopfield modfl].
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APPENDIX

We present here the detailed derivation of the expressions A

used in the paper. From E(.7) we obtain thapngG in Eq.
(10) is given by

p s
> > 2> Mg{”glé”si”sf>>,

(A1)

1#] u=2 =1
where the bracket indicates an average qér}, {&/} for

ePBG = < < BN Y

u=2, in that order. Taking advantage of the statistical inde

pendence of th¢&!}, we may write[21]

epnBG: 1:[2 <e(ﬁ/2N)Z tIJE )\Tf.wff”> ’
. R O e

(A2)

where

tij = 2 Slasja . (A3)

From now on we will indicate by a double bracket an

average as shown in EA2); then

(&) =(bér)=0,
: (A4)
(&TEr™))=0b"+(1-b6,, .

By using the cumulant expansion in EGA2), we may
write

P | K
nBG=KEZE(§> Se(x), (A5)
ti; «
sc(x>=<< 2N 2 M&f”%,‘”} >> (A6)
! 4 cumulant

It has been shown elsewhdi&l] that the only relevant con-

tribution in the thermodynamic limit comes from cumulant
averages with the maximum number of sums over sites, or

“ring diagrams.” This gives from Eq(A4) and Eq.(A6),

2D (e —1)!
Sting( k) = TN P igiotisig” i
X 2 LTlTZLTZTs' : ‘LTKTli (A7)

T1To " Ty

Sing(1) =28 D= DITH(LYTr (%),  (A9)
whereq is thenxn overlap matrix with elements
1 al CY2
qalazzﬁ EI S, Sl . (A].O)
Introducing Eq.(A9) in Eqg. (A5), we obtain
.1 1 R
nBG=3 > —B" Tr(L)TH(G"). (A11)
k=2 = =

In order to evaluate the traces in E@\11) we first re-
place the overlaps in EqQA10) by the order parameters
aja, 107 @17 ap, by means of Eq(16). We then find that
the matrixL has nondegenerate eigenvalues, o in Eq.
(16), and one eigenvalue,,= \,(1—b?) that is 5—2) de-

generate; then

TrL=0+ 0 +(s—2)w),. (A12)

Introducing Eq.(A12) into Eq.(A11), we obtain

1
nBG=— ETri:;_ . ai{In[1-Bwiq]+ Bwid;
o (A13)

witha,=a_=1la,=(s—2).
To calculate the instability line, we parametriqgla2 as

in Eq. (20) and we evaluate the traces in H&13) by ex-
panding the logarithms to second ordersp ,,, with the

result

NnBG=nBGrst BAGRrsg, (Al4)
where
1 i
BOrs—5 S a1-wpCl-as B
(A15)

andC=(1—q). For the replica symmetry breaking part, we
obtain

P

a1F ay agFay

>

i=+,—,m

AGrep= — —
B RSB™ Z

nalaz 77!136(4

aiIBZ("‘)izlvIi Mia3a4’

a1

(A16)

where

M'=[1-Bwiq] *. (A17)



PRE 61 CATEGORIZATION IN A HOPFIELD NETWORK . .. 4865

We also have to expandl in Eqg. (19) to second order in C, 2¢,
A, s with the result Nov=C2: N9y = Mva; = 2-n)’ Naja,™ 2-n)(3-n)’
BA=n f Dz{{In 2cosh Bh &1+ Bmy\ €1 ch 2¢)
—o SA

)\0V2C2|)\0a1:)\va1: (z_n)' alazzm'

+ BAARsg, (A21)

where a1, a,%# 6,v. We obtain that the replicon eigenvalue
(A18)  x is the smaller solution of the secular equation:

+ﬁm5_17\mX+ﬂ\/EZ]>>— %aﬁzl’

1 ap?\? [K'—x[aB?K—x]—1=0, (A22)
,BAARsBZE(T> ;& 251 7\767\7’5’F75;7'5/,
v (Alg) where
where the correlation functionk .., s =((S"S%S”'S")) , w?
—q? are calculated with the replica symmetric theory. K :i:;_ a8 [1-BaCl’ (A23)
From Eq.(17), Eq. (A16), and Eq.(A19), we obtain for Y :

the replica symmetry breaking free energy

1 K:f Dz ((cosh [ Bmy\ 1M+ BMg_ 1\ prXs
BAfrsg= BAGRrggt BAARse— 501132 ;5 NysN ys - o
¥

(A20) +Barzl)y), (A24)

We parametrize the replicon eigenvec{dr,20] of the and the double bracket indicates the random average over
quadratic form in Eq(A20), &1 xg, andél, in that order.
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