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Categorization in a Hopfield network trained with weighted examples:
Extensive number of concepts

Rogério L. Costa and Alba Theumann
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonc¸alves 9500, CP 15051,

91501-970 Porto Alegre, RS, Brazil
~Received 2 August 1999!

We consider the categorization problem in a Hopfield network with an extensive number of conceptsp
5aN and trained withs examples of weightlt , t51, . . . ,s in the presence of synaptic noise represented by
a dimensionless ‘‘temperature’’T. We find that the retrieval capacity of an example with weightl1, and the
corresponding categorization error, depend also on the arithmetic meanlm of the other weights. The catego-
rization process is similar to that in a network trained with Hebb’s rule, but forl1 /lm.1 the retrieval phase
is enhanced. We present the phase diagram in theT-a plane, together with the de Almeida–Thouless line of
instability. The phase diagrams in thea-s plane are discussed in the absence of synaptic noise and several
values of the correlation parameterb.

PACS number~s!: 64.60.Cn, 75.10.Nr, 75.10.Hk
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I. INTRODUCTION

In the seminal work by Amit, Gutfreund, and Sompoli
sky @1# on the statistical equilibrium properties of th
Hopfield model @2# for attractor neural networks, it wa
shown that, besides the desired retrieval states of si
memories, there appeared undesirable mixture states w
several patterns could be recalled. However, in later de
opments it was shown that mixture states could be very u
ful in the description of a different mental process, that
categorization. In the categorization process, the netw
learns several blurred examples of a concept, and there
competition between the retrieval of an individual exam
and the state in which the network categorizes by retriev
the hidden concept common to the individual examples@3#.

The problem of categorization has been widely inve
gated in a Hopfield network both in the absence@4# and in
the presence@5# of synaptic noise, in layered neural networ
both for binary@6# and multistate neurons@7#, and analogical
networks@8#. Dynamical studies were also performed in ve
diluted networks for binary@9# and multistate neurons@10#.
The effect of gradual dilution and of synaptic noise in t
categorization ability of an attractor neural network with h
erarchically correlated patterns has been studied rece
@11#.

In a previous publication@12# we addressed ourselves
the problem of categorization in an attractor neural netw
trained with weighted examples in the presence of syna
noise, for a finite numbers of concepts. We found that
retrieval capacity of an example in the competition with c
egorization depends on the ratio between the weight of
retrieved example and the mean value of the other weig
When this ratio is larger than unity we obtained that the l
of first-order transitions between the retrieval and categ
zation phases ends at a critical point. Prior to us, a gene
ized Hebb’s rule with weighted patterns has been used
several schemes of neural networks@13–17#. In @18# a
mechanism was proposed to enhance the retrieval of a fi
subset of ‘‘marked’’ patterns by increasing their relati
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weights. When the weight of the marked subset is su
ciently large, the discontinuous transition from retrieval
spin glass phase becomes continuous at a tricritical po
When the number of marked patterns is extensive, the t
sition is always discontinuous@19#. We refer the reader to
our previous paper@12# for more details on the justification
of the model, and we concentrate here on the extension
the work to the case of an extensive number of concepts

When we are in the presence of a numberp5aN of con-
cepts, they may interfere forming a spin glass phase
competes with the processes of retrieval and categoriza
and it is the purpose of this paper to present our results
phase diagram whenaÞ0. We obtained that the retrieva
phase is never a global minimum of the free energy, altho
the region in which the retrieval of a particular example is
relative minimum increases with its weight.

The outline of the paper is as follows. We present t
calculation of the free energy and saddle point equati
within a replica symmetric calculation in Sec. II, togeth
with the results for the Almeida-Thouless instability line. W
leave Sec. III for conclusions, and the technical details of
calculation are presented in the Appendix.

II. MODEL

We study in this paper the categorization ability of
Hopfield network withN neuronsSi561, trained withs
weighted examples of a given concept, for an extensive n
ber p5aN of concepts. By introducing the dimensionle
temperatureT51/b as a measure of synaptic noise, the c
egorization and retrieval overlaps can be obtained from
free energy associated to the Hamiltonian@12#

H52
1

2 (
i , j

Ji j SiSj1 (
m51

p

hm(
i

Sij i
m , ~1!

where the synapsesJi j are given by the weighted Hebb’
rule:
4860 ©2000 The American Physical Society
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Ji j 5
1

N (
m

p

(
t

s

ltj i
mtj j

mt ~2!

and thehm are auxiliary fields. The examplesj i
mt are binary

random variables that may or may not be aligned to
concept$j i

m% with probability

P~j i
mtuj i

m!5
1

2
~11b!d~j i

mt2j i
m!1

1

2
~12b!d~j i

mt1j i
m!.

~3!

Thep concepts$j i
m% are uncorrelated and they may be equ

to 61 with equal probability.
The quantities of interest are the categorization overla

mm5
1

N (
i

Sij i
m ~4!

and the related categorization error

em5
12mm

2
, ~5!

together with the retrieval overlap

mmt5
1

N (
i

Sij i
mt . ~6!

As we are interested in the categorization process o
given concept, saym51, we expect the retrieval and categ
rization overlapsm1 and m1t in Eq. ~4! and Eq.~6! to be
O(1), while all the other overlaps form.1 would be
O(1/AN) and contribute to the spin glass phase. Then
write the partition function

Z5E )
t

dm1te
2(Nb/2)(

t
m1t

2 lt

3TrH expF b

2N (
i , j

(
m52

p

(
t51

s

ltj i
mtj j

mtSiSj1(
i

HiSi G J ,

~7!

where

Hi5h1j i
11(

t
m1tltj i

1 . ~8!

Using the replica method we write the free energy p
site:

bF52 lim
n→0

1

Nn
@Zn21#, ~9!

whereZn5^Zn& and^•••& stands for an average over$j i
mt%,

$j i
m% in that order. We reserve the detailed calculations

the Appendix and present here only the relevant resu
From Eq.~A2! we can writeZn ,

Zn5e2(bN/2)(
a,t

(m1t
a )2

TrH ^e(i ,a Hi
aSi

a
&epnbĜJ , ~10!
e

l

a

e

r

r
s.

where, from Eq.~A11!,

nbĜ5
1

2 (
k52

1

k
bk Tr~Lk!Tr~ q̂k! ~11!

andL is ans3s matrix with elements

Lt1t2
5dt1t2

lt2
1~12dt1t2

!b2lt2
~12!

while q̂ is then3n overlap matrix with elements

q̂a1a2
5

1

N (
i

Si
a1Si

a2 . ~13!

At this point we consider the simplified distribution o
weights that was introduced in Ref.@12#, lt5lmÞl1, for
t>2 and we obtain from Eq.~11!

nbG52
1

2
Tr@12bv1q̂#2

1

2
Tr@12bv2q̂#

2
1

2
~s22!Tr ln@12bvmq̂#

2
1

2
@bv11bv21~s22!bvm#Tr q̂ ~14!

with

vm5lm~12b2!,

v65
1

2
$l11lm@11~s22!b2#%

6„$l12lm@11~s22!b2#%214~s21!b4l1lm…
1/2.

~15!

We introduce the order parameters in Eq.~13! by means
of the identities

15E
2`

`

)
gÞd

dqgdE
2ı`

ı` b2a

2

drgd

2pı

3expH ab2

2 (
gÞd

r gd((
i

Si
gSi

d2Nqgd)J ~16!

and we obtain forZn at the saddle point

ln Zn52NH b

2 (
g

@l1~m11
g !21~s21!lm~ms21

g !2#

2abG~qgd!1
ab2

2 (
gÞd

r gdqgdJ 2NbL, ~17!

where given the symmetry of the weights we look for a s
lution:

m1t5m11dt11ms21~12dt1! ~18!

and we call
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eNbL5 KTrHe(g
bH j

gSj
g
e(ab2/2)(

gÞd
r gd(

j
Sj

gSj
dJ L $j i

1%,$j i
t% .

~19!

Having in mind the calculation of the de Almeida
Thouless@20# instability line, we write the saddle-point so
lution:

qgd5q1hgd ,

r gd5r 1lgd ,
~20!

m11
g 5m11,

ms21
g 5ms21 ,

and we obtain to the second order inlgd ,hgd , in the limit
n→0,

2
ln Zn

N
5nb f RS1bD f RSB, ~21!

where the replica symmetric free energy is given by

b f RS5b
1

2
@l1m11

2 1~s21!lmms21
2 #

2E Dz^ ln 2 cosh@bh1j11bm11l1j111blmms21x

1bAarz#&1a
1

2 H b2rC1 (
i 51,2,m

aiF ln~12v ibC!

2q
bv i

12bv iC
1bv i G J ~22!

with

a15a251,

am5~s22!, ~23!

C5~12q!.

The averagê & in Eq. ~21! is over the examples and th
concept, in that order. The variable

x5 (
t52

s

j1t ~24!

has a conditional binomial distribution@5,12#

P~xuj1!5S s21

k D F1

2
~11b!GkF1

2
~12b!Gs212k

,

~25!

k5
1

2
@j1x1~s21!#.

The correctionD f RSB due to replica symmetry breaking
the quadratic form obtained in the Appendix, Eq.~A20!
A. Replica symmetric theory

The saddle-point equations for the replica symmetric
der parametersq, r, m11, andms21 are obtained by extrem
izing f RS in Eq. ~22! while m1 in Eq. ~4! is obtained by
differentiating f RS with respect toh1. We obtain, by calling
nk52k2(s21),

m115E
2`

`

Dz(
k50

s21 S s21

k D $P~k11!tanh~bg1!

1P~k!tanh~bg2!%, ~26!

ms215
1

s21E2`

`

Dz(
k50

s21 S s21

k D nk$P~k11!tanh~bg1!

2P~k!tanh~bg2!%, ~27!

m15E
2`

`

Dz(
k50

s21 S s21

k D $P~k11!tanh~bg1!

2P~k!tanh~bg2!%, ~28!

q5E
2`

`

Dz(
k50

s21 S s21

k D $P~k11!tanh2~bg1!

1P~k!tanh2~bg2!%, ~29!

where

g65m11l1j111zAar 6ms21lmnk. ~30!

The equation forr is

r 5q (
i 51,2,m

ai

v i
2

~12v ibC!2
~31!

with the coefficientsai in Eq. ~23!

B. Replica symmetry breaking

By solving for x in Eq. ~A22!, we obtain that the lowes
eigenvalue vanishes at the instability line,

ab2rK 5q, ~32!

where

K5E
2`

`

Dz(
k50

s21 S s21

k D $P~k11!sech4~bg1!

1P~k!sech4~bg2!% ~33!

andg6 are given in Eq.~30!.

III. NUMERICAL RESULTS AND DISCUSSIONS

We study in this paper the categorization ability of
Hopfield network trained withs weighted examples of eac
concept, for a macroscopic numberp5aN of concepts, in
the presence of synaptic noise represented by a dimens
less ‘‘temperature’’T, thus extending our previous results fo
finite p @12#. Besides the categorization and retrieval over
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in Eq. ~14! and Eq.~16!, we have to consider now the sp
glass overlap matrix in Eq.~13!. Having in mind that the
network has not been exposed to the underlying concepts
only to imperfect and differently weighted examples of the
we are interested in knowing how the relative weights infl
ence the occurrence of the retrieval, categorization, and
glass phases. As the concepts are statistically uncorrelat
is sufficient to analyze the overlaps corresponding to one

FIG. 1. Phase diagram in theT-a plane, forb50.4,s510, and
values ofl1 /lm51.75~broken line! andl1 /lm51.0 ~full line!. At
high temperaturesT.TSG the system is in the paramagnetic pha
for Tc(1),T,TSG there is a spin glass phase, forTc(2),T
,Tc(1) there appears a categorization solution that is only loc
stable, and forT,Tc(2) the categorization phase is globally stab
For l1.lm there is also a locally stable retrieval phase whenT
,TR . We indicate by AT the de Almeida–Thouless instability lin
T anda are dimensionless parameters.

FIG. 2. Phase diagram in thea-s plane in the absence of syn
aptic noise (T50) and b50.2 for valuesl1 /lm50.75 ~pointed
line!, 1.0~full line!, and 1.75~broken line!. For high values ofa the
network is in the spin glass phase. Fora,aR the network retrieves
and foraR,a,ac the network categorizes. For small values ofs,
when ac,aR , the retrieval solution is globally stable. The thre
linesac for differentl1 /lm coincide for larges, but for smalls the
line for l1 /lm51.75 curves down, leaving only the retrieval sol
tion for small values ofs. T anda are dimensionless parameters
ut
,
-
in
, it
of

them, let us saym51; then the retrieval phase of one pa
ticular example$j i

11% is characterized by the asymmetric s
lution m11.ms21 in Eq. ~18!, while in the categorization
phasem115ms21 and the categorization errore1 in Eq. ~16!
drops abruptly to small values. For finite values ofaÞ0
there is also a spin glass phase withqÞ0, rÞ0 in Eq. ~20!,
which interferes with the retrieval and categorization phas
We calculate the spin glass phase in the replica symme
approximation, together with the de Almeida–Thouless
stability line where the replicon eigenvalue vanishes.

In the present work we consider the simplest choice
differentiated weights in Eq.~2!, namelylt5lm ,t>2, and
lmÞl1. We show in Fig. 1 the phase diagram in theT-a
plane, obtained from the solution of the saddle point eq
tions, Eqs.~26!–~31!, for correlation parameterb50.4, num-
ber of exampless510, and for different values of the rati
l1 /lm . For l15lm we recover the results of Ref.@15#,
which show only a spin glass and categorization orde
phases, while forl1.lm we observe the occurrence of
locally stable retrieval phase at low temperatures. We a
show the de Almeida–Thouless instability line, which limi
the validity of the replica symmetric theory at very low tem
peratures. The effect of varying the number of exampless in
the absence of synaptic noise is shown in Fig. 2, where
present the phase diagram in thea-s plane for correlation
parameterb50.2 for several values ofl1 /lm . A compari-
son with Fig. 1 shows that the relative enhancement of
retrieval versus categorization phases may be controlled
increasingl1 /lm and decreasing the correlation parame
b. The phase diagrams in thea-s plane for T50, several
values of the correlation parameterb, andl1 /lm are shown
in Fig. 3.

To conclude, the present results show that weighted
amples allow us to control the extent and importance of
retrieval versus categorization phases within a replica s
metric spin glass theory. The de Almeida–Thouless insta
ity line limits our results in the lower part of phase diagra
in theT-a plane, particularly in the phase boundary betwe
the categorization phase and the spin glass phase. In con

,

y
.

FIG. 3. Phase diagram in thea-s plane in the absence of syn
aptic noise for correlation parameterb50.4 , and for values
l1 /lm51.75 ~full line! and 0.75~broken line!. The meanings of
linesaR andac are as in Fig. 2. The two linesac coincide for both
values ofl1 /lm . T anda are dimensionless parameters.
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the breakdown of the replica symmetric mean field equa
is less important in the Hopfield model@1#.
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APPENDIX

We present here the detailed derivation of the express
used in the paper. From Eq.~17! we obtain thatpnbĜ in Eq.
~10! is given by

epnbĜ5K K e(b/2N)(
a

(
iÞ j

(
m52

p

(
t51

s

ltj
i
mtj

j
mtS

i
aS

j
aL L ,

~A1!

where the bracket indicates an average over$j i
mt%, $j i

m% for
m>2, in that order. Taking advantage of the statistical in
pendence of the$j i

m%, we may write@21#

epnbĜ5 )
m>2 K K e(b/2N)(

i , j
t i j (

t
ltj i

mtj j
mtL

$j i
mt%
L

$j i
m%

,

~A2!

where

t i j 5(
a

Si
aSj

a . ~A3!

From now on we will indicate by a double bracket a
average as shown in Eq.~A2!; then

^^j i
mt&&5^bj i

m&50,
~A4!

^^j i
mtj i

mt8&&5b21~12b2!dtt8 .

By using the cumulant expansion in Eq.~A2!, we may
write

nbĜ5 (
k52

`
1

k! S b

2 D k

Sc~k!, ~A5!

Sc~k!5K K F(
iÞ j

t i j

N (
t

ltj i
mtj j

mtGkL L
cumulant

. ~A6!

It has been shown elsewhere@21# that the only relevant con
tribution in the thermodynamic limit comes from cumula
averages with the maximum number of sums over sites
‘‘ring diagrams.’’ This gives from Eq.~A4! and Eq.~A6!,

Sring~k!5
2(k21)~k21!!

Nk (
i 1Þ i 2Þ•••Þ i k

t i 1i 2
t i 2i 3

•••t i k i 1

3 (
t1t2•••tk

Lt1t2
Lt2t3

•••Ltkt1
, ~A7!
n

l

ns

-

or

where we introduced ans3s matrix L with elements

Lt1t2
5dt1t2

lt2
1~12dt1t2

!b2lt2
. ~A8!

By performing first the sums over sites and later the su
over replica indices, we obtain in Eq.~A7!

Sring~k!52(k21)~k21!!Tr~Lk!Tr ~ q̂k!, ~A9!

whereq̂ is then3n overlap matrix with elements

q̂a1a2
5

1

N (
i

Si
a1Si

a2 . ~A10!

Introducing Eq.~A9! in Eq. ~A5!, we obtain

nbĜ5
1

2 (
k52

1

k
bk Tr~Lk!Tr~ q̂k!. ~A11!

In order to evaluate the traces in Eq.~A11! we first re-
place the overlaps in Eq.~A10! by the order parameter
qa1a2

, for a1Þa2, by means of Eq.~16!. We then find that

the matrixL has nondegenerate eigenvaluesv1 ,v2 in Eq.
~16!, and one eigenvaluevm5lm(12b2) that is (s22) de-
generate; then

Tr Lk5v1
k 1v2

k 1~s22!vm
k . ~A12!

Introducing Eq.~A12! into Eq. ~A11!, we obtain

nbG52
1

2
Tr (

i 51,2,m
ai$ ln@12bv iq#1bv iq%

~A13!

with a15a251,am5(s22).
To calculate the instability line, we parametrizeqa1a2

as
in Eq. ~20! and we evaluate the traces in Eq.~A13! by ex-
panding the logarithms to second order inha1a2

, with the
result

nbG5nbGRS1bDGRSB, ~A14!

where

bGRS52
1

2 (
i 51,2,m

ai H ln@12v ibC#2q
bv i

12v ibC
1bv i J

~A15!

andC5(12q). For the replica symmetry breaking part, w
obtain

bDGRSB52
a

4 (
a1Þa2

(
a3Þa4

ha1a2
ha3a4

3 (
i 51,2,m

aib
2v i

2Ma1a2

i Ma3a4

i , ~A16!

where

Mi5@12bv iq#21. ~A17!
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We also have to expandL in Eq. ~19! to second order in
lgd with the result

bL5nH E
2`

`

Dz^^ ln 2cosh@bh1j11bm11l1j11

1bms21lmx1bAarz#&&2
1

2
ab2r J 1bDLRSB,

~A18!

bDLRSB5
1

2 S ab2

2 D 2

(
gÞd

(
g8d8

lgdlg8d8Ggd;g8d8 ,

~A19!

where the correlation functionsGgd;g8d85^^SgSd;Sg8Sd8&&
2q2 are calculated with the replica symmetric theory.

From Eq.~17!, Eq. ~A16!, and Eq.~A19!, we obtain for
the replica symmetry breaking free energy

bD f RSB5bDGRSB1bDLRSB2
1

2
ab2(

gÞd
hgdlgd .

~A20!

We parametrize the replicon eigenvector@1,20# of the
quadratic form in Eq.~A20!,
A

nd
hun5c2 ,hua1
5hna1

5
c2

~22n!
, ha1a2

5
2c2

~22n!~32n!
,

lun5c28 ,lua1
5lna1

5
c28

~22n!
, sla1a2

5
2c28

~22n!~32n!
,

~A21!

wherea1 ,a2Þu,n. We obtain that the replicon eigenvalu
x is the smaller solution of the secular equation:

@K82x#@ab2K2x#2150, ~A22!

where

K85 (
i 51,2,m

ai

v i
2

@12bv iC#2
, ~A23!

K5E
2`

`

Dz ^^cosh24@bm11l1j111bms21lmxs

1bAarz#&&, ~A24!

and the double bracket indicates the random average
j11, xs , andj1, in that order.
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